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Notes - Unit 4

PIPELINING/UNFOLDING

MULTIPLICATION

UNSIGNED MULTIPLICATION
= We already know the iterative version of the multiplier. Here, we show how to implement the multiplication using an array
multiplier. In this implementation, two rows are added up at each stage.

= Unfolded version (purely combinational): Here, we have a different hardware for every summation of two rows.
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= Pipelined version: To increase frequency of operation, we place registers at every stage. Here, we are also including an
enable input and a valid output.
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SIGNED MULTIPLICATION

= We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage.
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DIVISION

RESTORING ARRAY DIVIDER FOR UNSIGNED INTEGERS

= A, B: positive integers in unsigned representation. A = ay_jay_, ...ao With N bits, and B = by, _1by_, ... by With M bits, with
the condition that N > M. Q = quotient, R = residue. A =B X Q + R.

M bits
In this parallel implementation, the result of every stage is called ,
the remainder R;. l l l :
The figure depicts the parallel algorithm with N stages. For each S age0| | | | | |
stagei, i =0,...,N — 1, we have: Rq
R;: output of stage i. Remainder after every stage. Y,
Y;: input of stage i. It holds the minuend.
Stage1| | | | | |
For the next stage, we append the next bit of A to R;. This becomes R,
Y;+1 (the minuend): ll
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At each stage i, the subtraction Y; — B is performed. If ¥; = B then R,
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Since B has M bits, the operation Y; — B requires M bits for both ll
operands. To maintain consistency, we let Y; be represented with M y Y o
bits. stagemer| | | [..] [ ]
Ry,
R;: output of each stage. For the first M stages, R; requires i + 1 ‘v’,
bits. However, for consistency and clarity’s sake, since R; might be l
the result of a subtraction, we let R; use M bits. stagem+2| | | [ ...] ||

For stages 0 to M — 1: : :
R; is always transferred onto the next stage. Note that we transfer [ l [ le

R; with M — 1 least significant bits. There is no loss of accuracy here
since R; at most requires M — 1 bits for stage M — 2. We need R;
with M-1 bits since Y;,, uses M bits. Stage N-1 | | | | | | |

Stages M to N —1:
Starting from stage M — 1, R; requires M bits. We also know that M+1 bits
the remainder requires at most M bits (maximum value is 2M — 2). Parallel implementation algorithm

So, starting from stage M-1 we need to transfer M bits.

As Y;,, now requires M + 1 bits, we need M + 1 units starting from stage M.

= To implement the operation Y; — B we use a subtractor. When Y; > B — cout; = 1, and when Y; < B — cout; = 0. This cout;
becomes a bit of the quotient: Q; = couty_;_;. This quotient Q requires N bits at most.

= Also, the final remainder is the result of the last stage. The maximum theoretical value of the remainder is 2" — 2, thus the
remainder R requires M bits. R = Ry_;.

= Also, note that we should avoid a division by 0. If B = 0, then, in our circuit: Q =2¥ — 1 and R = ay_;apy_; ... aq-
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COMBINATIONAL ARRAY DIVIDER

The figure shows the hardware of this array divider for N=8, M=4. Note that the first M = 4 stages only require 4 units, while
the next stages require 5 units. This is fully combinatorial implementation.

to determine whether the next R; is ¥, — B or Y;.

transferred on to the next stage.

Each level computes R;. It first computes ¥; — B. When ¥; = B - cout; = 1, and when ¥; < B - cout; = 0. This cout; is used

Each Processing Unit (PU) is used to process Y; — B one bit at a time, and to let a particular bit of either Y; — B or Y; be
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Fully Combinatorial Array Divider architecture for N=8, M=4
FULLY PIPELINED ARRAY DIVIDER
The figure shows the hardware core of the fully pipelined array divider with its inputs, outputs, and parameters.
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Fully pipelined IP core for the array divider
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The figure shows the internal architecture of this pipelined array divider for N=8, M=4. Note that the first M=4 stages only
require 4 units, while the next stages require 5 units. Note that the enable input ‘E’ is only an input to the shift register on the
left, which is used to generate the valid output v. This way, valid outputs are readily signaled. If E=1’, the output result is
computed in N cycles (and v="1" after N cycles).
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Fully Pipelined Array Divider architecture for N=8, M=4

SIGNED DIVISION
= We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage.
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SQUARE ROOT

We use the optimized algorithm of Unit 2.

Unfolding: every single iteration is implemented by a particular hardware. By observing the algorithm, we need n stages

with n adder/subtractors.

As in the case of the iterative circuitry, there is a reduction in this case as well for the first iteration:

R'n_y =dyp_qdan_p — 01
_ {1, ifR'p_1 =0
1= 10,ifR",_, <0

> Gn1=don1don_2, b = dpp_1®@dypn_3, a =dzn

Oon1 donp " Ry =cbal gnq

00 111 0
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11 010 1

R',,_; requires n — (n — 1) + 1 = 2 bits, thus we only use
the last 2 LSBs of the result.

Also, since these are few logic gates on the first iteration,
we can embed the first and second stages into one
stage. Finally, we include registers levels at every stage.
We have n — 1 register stages.

In addition, you can always add a shift register for E and
V.
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CORDIC

= Here, we just need to implement every iteration as a different hardware architecture. The figure shows the circular CORDIC
(basic algorithm).

= Unfolding: every iteration is implemented by a specific hardware. For the circular CORDIC algorithm, where i = 0,1,2, ...n,
there are n iterations where values are computed. So, we need n stages.

= To qualify input data xin, yin, zin, we use the enable input E. The valid output v is then generated by a simple shift register
of length n.
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