ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — Reconfigurable Computing Fall 2018

Notes - Unit 4

PIPELINING/UNFOLDING

MULTIPLICATION

UNSIGNED MULTIPLICATION
= We already know the iterative version of the multiplier. Here, we show how to implement the multiplication using an array
multiplier. In this implementation, two rows are added up at each stage.

= Unfolded version (purely combinational): Here, we have a different hardware for every summation of two rows.

a; a, a; a4, x 0000 x 0000 +
b, b, by b, 0000 09000
asb, ab, a;b, agb, 0000 000000 *
. 33};1 az}gl alil agb; 0000 09000
azby a0, a;0; agh; ‘/....\
+
TP Babs b 2 000 — 0008
L J [t J
p7 p6 pS p4 p3 p2 pl pO
aj 0 as 5|12 ?1 ?o
PU, by
Xo3 /" Yoz |Xo2 Yoz | Xo1 Yor | Xoo Yoo
b
PU PU PU PU «— 0 :
Cout FA Cin Co4 Co3 Co2 Co1 Coo
I
l X13 Y13 X2 Y2 [X1 Y11 (%10 Y10
b
PU PU PU PU «— O 2
Ci4 Ci3 Ci2 Ci1 Cio
X3 Y3 lxzz Y22 lxn Ya1 lxzo Y20
b
PU PU PU PU <« 3
Coa Cy3 Cn Ca1 C0 0
X33 Y33 lst Y32 lX31 Y31 lXso Y30 |
ISk Ps Ps Py Ps3 b2 P1 Po

1 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — Reconfigurable Computing Fall 2018

= Pipelined version: To increase frequency of operation, we place registers at every stage. Here, we are also including an
enable input and a valid output.

E 0 as a, aj ag b, b, b, b,
IZ‘J:XIM Yo3 |X02 Yoz | Xo1 Yo1 | Xoo Yoo
PU PU PU PU
Co4 Co3 Co2 Co1 Coo
903 Qo3 |902 Qo2 1901 o1 |900 oo El
V]] M
X13/ Y1z VX /Y2 X1/ Y1 X10” Y10
PU PU PU PU «— 0
Ci4 Ci3 Ci2 Ciy Cio
913 A3 1912 Q12 1911 Ay {910 Q10
V] ; ; ; ;]]
X3,/ Vo3 X2 /Y2 X1,/ Va1 X207 Y20
PU PU PU PU
Cos Cy3 Cxn Ca1 (_Czoo
? 23 Q§ﬁzz qzl%Jﬂn Clzl%J_jzo CI@ ?
v Py Pe Ps Py Ps Py P Po
SIGNED MULTIPLICATION

= We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage.

2 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — Reconfigurable Computing Fall 2018

DIVISION

RESTORING ARRAY DIVIDER FOR UNSIGNED INTEGERS

= A, B: positive integers in unsigned representation. A = ay_jay_, ...ao With N bits, and B = by, _1by_, ... by With M bits, with
the condition that N > M. Q = quotient, R = residue. A =B X Q + R.

M bits
In this parallel implementation, the result of every stage is called ,
the remainder R;. l l l :
The figure depicts the parallel algorithm with N stages. For each S age0| | | | | |
stagei, i =0,...,N — 1, we have: Rq
R;: output of stage i. Remainder after every stage. Y,
Y;: input of stage i. It holds the minuend.
Stage1| | | | | |
For the next stage, we append the next bit of A to R;. This becomes R,
Y;+1 (the minuend): ll
Yiy1 = Ri&ay_1-1,i=0,..,N—1
Stage 2| | | | | |
At each stage i, the subtraction Y; — B is performed. If ¥; = B then R,
R;=Y;—B.IfY;<B,thenR; = Y,. i
. # of Stage 3
Stage Y; Computation of R; R bits | | | | | |
_ Ry=Y,—B,if ¥,=B
0 | H=avs Ry =Yy, if Yo < B 1 .
~ Ry=Y,—B,if¥,>B .
1 Y, = Ro&ay_, R—V.if v, < B 2 ‘ y i;[, .
_ R,=Y,—B,if Y, 2B Stage M-1
> [norsa, | GIBhoER ; [LTL.1]
M-1
. v,
_ _ Ry1=Yy_1—BifYy 2B i
ML] Yo = Rua8un | g oy if Yy, < B : sagem [[[..[[]
R}l
Since B has M bits, the operation Y; — B requires M bits for both ll
operands. To maintain consistency, we let Y; be represented with M y Y o
bits. stagemer| | | [..] []
Ry,
R;: output of each stage. For the first M stages, R; requires i + 1 ‘v’,
bits. However, for consistency and clarity’s sake, since R; might be l
the result of a subtraction, we let R; use M bits. stagem+2| | | [...] ||

For stages 0 to M — 1: : :
R; is always transferred onto the next stage. Note that we transfer [l [le

R; with M — 1 least significant bits. There is no loss of accuracy here
since R; at most requires M — 1 bits for stage M — 2. We need R;
with M-1 bits since Y;,, uses M bits. Stage N-1 | | | | | | |

Stages M to N —1:
Starting from stage M — 1, R; requires M bits. We also know that M+1 bits
the remainder requires at most M bits (maximum value is 2M — 2). Parallel implementation algorithm

So, starting from stage M-1 we need to transfer M bits.

As Y;,, now requires M + 1 bits, we need M + 1 units starting from stage M.

= To implement the operation Y; — B we use a subtractor. When Y; > B — cout; = 1, and when Y; < B — cout; = 0. This cout;
becomes a bit of the quotient: Q; = couty_;_;. This quotient Q requires N bits at most.

= Also, the final remainder is the result of the last stage. The maximum theoretical value of the remainder is 2" — 2, thus the
remainder R requires M bits. R = Ry_;.

= Also, note that we should avoid a division by 0. If B = 0, then, in our circuit: Q =2¥ — 1 and R = ay_;apy_; ... aq-

3 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-4900/5900: Special Topics — Reconfigurable Computing

Fall 2018

COMBINATIONAL ARRAY DIVIDER

The figure shows the hardware of this array divider for N=8, M=4. Note that the first M = 4 stages only require 4 units, while
the next stages require 5 units. This is fully combinatorial implementation.

to determine whether the next R; is ¥, — B or Y;.

transferred on to the next stage.

Each level computes R;. It first computes ¥; — B. When ¥; = B - cout; = 1, and when ¥; < B - cout; = 0. This cout; is used

Each Processing Unit (PU) is used to process Y; — B one bit at a time, and to let a particular bit of either Y; — B or Y; be

b3 0 b2 0 b1 0 bo a7
¢X03 lon ixol l %00 b a
Co Co Coo C¢ c PU
q7 U [« 1 :
Yo3 Yo2 Yo Yoo 26
X13 X12 X11 lxlo
Cig Cy C c Cio
Jde | le—1 *
Y13 Y12 Y11 Y10 as
X513 X550 X51 l X250 cout FA cin
Ca2q C2 Ca2 C21 C2o
Jds le— 1 l
Y23 Y22 You 20 a4 s ——; 1 0 ;
X33 %32 X31 lxw
Cay c c C3 C3 ¢
d4 | l«e— 1
0 Y33 Y32 Y3 Y30 as
\ Xag %43 Xa42 X1 ¢X4o
Cus Cy (e} c Cy Cao
3= U le—1
Yaa Ya3 Yaz Ya1 Yao a2
X5y X53 X552 Xs51 l x50
Cs Cs Cs C Cs1 Cso
A2 <7 U <1
Ys4 Ys3 Ys2 Ys1 ¥Ys0 a1
X64 X63 X62 X61 lx6o
Cgs Cea Ce Cg2 Ce1 Ceo
M IN ai <—l—— U le—1
lyd\ Y63 Y62 Ye1 Y60 do
A_Nzg ARRAY N/, 0 X74 X73 X72 X71 lxm
Crs c c C72 c C1o
p—My . DIVIDER | M/, o o< PU [« PU PU |«— PU [«— PU [«1
Y74 Y73 ¥72 ¥71 ly@
rs Iy I o
Fully Combinatorial Array Divider architecture for N=8, M=4
FULLY PIPELINED ARRAY DIVIDER
The figure shows the hardware core of the fully pipelined array divider with its inputs, outputs, and parameters.
M N
ANy o - N/y 0
M/ N M L5
B ARRAY R
F ——| DIVIDER [_____,
resetn — >
clock — >
Fully pipelined IP core for the array divider
4 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-4900/5900: Special Topics — Reconfigurable Computing Fall 2018

The figure shows the internal architecture of this pipelined array divider for N=8, M=4. Note that the first M=4 stages only
require 4 units, while the next stages require 5 units. Note that the enable input ‘E’ is only an input to the shift register on the
left, which is used to generate the valid output v. This way, valid outputs are readily signaled. If E=1’, the output result is
computed in N cycles (and v="1" after N cycles).

b, 0 b, 0 b 0 b a,
|\ I%J:im]\ I%J:J{M]\ IZ'J:J{(M |\ I%J:IXOO
Co4 Co3 Co2 Co1 1 =00
|

chs Yoz
X13

X12

C

12

S e

= o
£

lYn

01
1

Cha

23

xljf
N F
N

:
7.
|

L
23 Yoo
ri [l [Z'j]
Clz] 33
Y33
ri Ul 1 0 [Z'j]

ds ds dy4 ds3 Ao SEl o I3 Iy I o)

Fully Pipelined Array Divider architecture for N=8, M=4

SIGNED DIVISION
= We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage.

5 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — Reconfigurable Computing

Fall 2018

SQUARE ROOT

We use the optimized algorithm of Unit 2.

Unfolding: every single iteration is implemented by a particular hardware. By observing the algorithm, we need n stages

with n adder/subtractors.

As in the case of the iterative circuitry, there is a reduction in this case as well for the first iteration:

R'n_y =dyp_qdan_p — 01
_ {1, ifR'p_1 =0
1= 10,ifR",_, <0

> Gn1=don1don_2, b = dpp_1®@dypn_3, a =dzn

Oon1 donp " Ry =cbal gnq

00 111 0
01 000 1
10 001 1
11 010 1

R',,_; requires n — (n — 1) + 1 = 2 bits, thus we only use
the last 2 LSBs of the result.

Also, since these are few logic gates on the first iteration,
we can embed the first and second stages into one
stage. Finally, we include registers levels at every stage.
We have n — 1 register stages.

In addition, you can always add a shift register for E and
V.

d2n—1 E 2n

d2n—2 d2n—1dZn—2

d2n—3dZn-4

7]

d2n—5dZn-6

_l dldO

2n-6

)
V
[+

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics — Reconfigurable Computing Fall 2018

CORDIC

= Here, we just need to implement every iteration as a different hardware architecture. The figure shows the circular CORDIC
(basic algorithm).

= Unfolding: every iteration is implemented by a specific hardware. For the circular CORDIC algorithm, where i = 0,1,2, ...n,
there are n iterations where values are computed. So, we need n stages.

= To qualify input data xin, yin, zin, we use the enable input E. The valid output v is then generated by a simple shift register
of length n.

Xin Yin mode Zin E
16¥ 116 14] 164116 14] 161116 14]
Y o 0—34:5Y
[2 [O H
u 20120 18] 201120 18] v i
< 1 N
ni p > > i
Xo Yo | MSB vse | %0 i
20| Lo/ 16 Tan'(20)
di(0) l ;
v v di(0) v v \/ v i
Nz e) : v 7
B R frm :
5 1] M
|<£ > > > i
()] X1 Y1 | MSB MSB Z; i

- ;
o LM
0 i
'(7) XN-1 YnN-1| MSB MSB ZN-1 i
7| 20D |
v v di(N-1) \2 i
1+ o< N4/ 4/ i
204 [20 18]
]
> >
16
x| [16 14]
Xout \

7 Instructor: Daniel Llamocca

